Mouse Xenograft Model for Mesothelioma ### **Summary** The National Cancer Institute is seeking parties interested in collaborative research to codevelop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma. #### **NIH Reference Number** F-302-2009 ### **Product Type** Research Tools ### Keywords - Research tool - mouse model - cancer - malignant mesothelioma - asbestos - immunoconjugate - SS1P ## **Collaboration Opportunity** This invention is available for licensing. #### Contact David Lambertson NCI TTC david.lambertson@nih.gov (link sends e-mail) ## **Description of Technology** The National Cancer Institute is seeking parties interested in collaborative research to codevelop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma. This invention involves the creation of a new mouse model for mesothelioma. By creating xenografts with mesothelioma cells that express GFP-Luciferase fusion proteins, the xenografts can be detected to a high degree of sensitivity, and monitored for several months following implantation. The high level of detection sensitivity improves the ability to monitor disease progression in response to therapeutic candidates, thereby allowing more efficient drug screening and evaluation. This has already been demonstrated by using the mouse to evaluate an anti-mesothelioma immunotoxin known as SS1P, a drug candidate that is currently being evaluated for clinical effectiveness. ### **Competitive Advantages** - The model is created using well characterized, art-accepted mesothelioma cells - The model exhibits the classical clinical progression of mesothelioma, demonstrating its accuracy as a model - The use of GFP-Luciferase fusion proteins allow for non-invasive evaluation of mesothelioma progression and response to drug candidates and for the use of highly sensitive detection systems such as bioluminescence ### Inventor(s) Mitchell Ho (NCI) ### **Development Stage** • Pre-clinical (in vivo) #### **Patent Status** • Research Material: NIH will not pursue patent prosecution for this technology ### **Therapeutic Area** • Cancer/Neoplasm ### **Updated** Friday, September 16, 2022 **Source URL:**https://techtransfer.cancer.gov/availabletechnologies/e-302-2009